Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ALTEX ; 40(3): 534-540, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36888967

RESUMEN

Progress in developing new tools, assays, and approaches to assess human hazard and health risk provides an opportunity to re-evaluate the necessity of dog studies for the safety evaluation of agrochemicals. A workshop was held where partic­ipants discussed the strengths and limitations of past use of dogs for pesticide evaluations and registrations. Opportunities were identified to support alternative approaches to answer human safety questions without performing the required 90-day dog study. Development of a decision tree for determining when the dog study might not be necessary to inform pesticide safety and risk assessment was proposed. Such a process will require global regulatory authority participation to lead to its acceptance. The identification of unique effects in dogs that are not identified in rodents will need further evaluation and determination of their relevance to humans. The establishment of in vitro and in silico approaches that can provide critical data on relative species sensitivity and human relevance will be an important tool to advance the decision process. Promising novel tools including in vitro comparative metabolism studies, in silico models, and high-throughput assays able to identify metabolites and mechanisms of action leading to development of adverse outcome pathways will need further development. To replace or eliminate the 90-day dog study, a collaborative, multidisciplinary, international effort that transcends organi­zations and regulatory agencies will be needed in order to develop guidance on when the study would not be necessary for human safety and risk assessment.


Asunto(s)
Rutas de Resultados Adversos , Plaguicidas , Animales , Perros , Humanos , Agroquímicos/toxicidad , Plaguicidas/toxicidad , Medición de Riesgo , Simulación por Computador
2.
Regul Toxicol Pharmacol ; 127: 105073, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34743952

RESUMEN

Human health risks from chronic exposures to environmental chemicals are typically estimated from potential human exposure estimates and dose-response data obtained from repeated-dose animal toxicity studies. Various criteria are available for selecting the top (highest) dose used in these animal studies. For example, toxicokinetic (TK) and toxicological data provided by shorter-term or dose range finding studies can be evaluated in a weight of evidence approach to provide insight into the dose range that would provide dose-response data that are relevant to human exposures. However, there are concerns that a top dose resulting from the consideration of TK data may be too low compared to other criteria, such as the limit dose or the maximum tolerated dose. In this paper, we address several concerns related to human exposures by discussing 1) the resources and methods available to predict human exposure levels and the associated uncertainty and variability, and 2) the margin between predicted human exposure levels and the dose levels used in repeated-dose animal studies. A series of case studies, ranging from data-rich to data-poor chemicals, are presented to demonstrate that expected human exposures to environmental chemicals are typically orders of magnitude lower than no-observed-adverse-effect levels/lowest-observed-adverse-effect levels (NOAELs/LOAELs) when available (used as conservative surrogates for top doses). The results of these case studies support that a top dose based, in part, on TK data is typically orders of magnitude higher than expected human exposure levels.


Asunto(s)
Experimentación Animal , Relación Dosis-Respuesta a Droga , Exposición a Riesgos Ambientales/análisis , Nivel sin Efectos Adversos Observados , Toxicocinética , Animales , Bases de Datos Factuales , Humanos , Dosis Máxima Tolerada , Medición de Riesgo , Pruebas de Toxicidad
3.
Regul Toxicol Pharmacol ; 127: 105070, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34718074

RESUMEN

Top dose selection for repeated dose animal studies has generally focused on identification of apical endpoints, use of the limit dose, or determination of a maximum tolerated dose (MTD). The intent is to optimize the ability of toxicity tests performed in a small number of animals to detect effects for hazard identification. An alternative approach, the kinetically derived maximum dose (KMD), has been proposed as a mechanism to integrate toxicokinetic (TK) data into the dose selection process. The approach refers to the dose above which the systemic exposures depart from being proportional to external doses. This non-linear external-internal dose relationship arises from saturation or limitation of TK process(es), such as absorption or metabolism. The importance of TK information is widely acknowledged when assessing human health risks arising from exposures to environmental chemicals, as TK determines the amount of chemical at potential sites of toxicological responses. However, there have been differing opinions and interpretations within the scientific and regulatory communities related to the validity and application of the KMD concept. A multi-stakeholder working group, led by the Health and Environmental Sciences Institute (HESI), was formed to provide an opportunity for impacted stakeholders to address commonly raised scientific and technical issues related to this topic and, more specifically, a weight of evidence approach is recommended to inform design and dose selection for repeated dose animal studies. Commonly raised challenges related to the use of TK data for dose selection are discussed, recommendations are provided, and illustrative case examples are provided to address these challenges or refute misconceptions.


Asunto(s)
Relación Dosis-Respuesta a Droga , Pruebas de Toxicidad/métodos , Toxicocinética , Animales , Pruebas de Carcinogenicidad/métodos , Pruebas de Carcinogenicidad/normas , Dosis Máxima Tolerada , Medición de Riesgo , Pruebas de Toxicidad/normas
4.
J Dev Biol ; 4(4)2016 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-29615595

RESUMEN

Heart attacks affect more than seven million people worldwide each year. A heart attack, or myocardial infarction, may result in the death of a billion cardiomyocytes within hours. The adult mammalian heart does not have an effective mechanism to replace lost cardiomyocytes. Instead, lost muscle is replaced with scar tissue, which decreases blood pumping ability and leads to heart failure over time. Here, we report that the loss of the chromatin factor ASXL2 results in spontaneous proliferation and cardiogenic differentiation of a subset of interstitial non-cardiomyocytes. The adult Asxl2-/- heart displays spontaneous overgrowth without cardiomyocyte hypertrophy. Thymidine analog labeling and Ki67 staining of 12-week-old hearts revealed 3- and 5-fold increases of proliferation rate for vimentin⁺ non-cardiomyocytes in Asxl2-/- over age- and sex-matched wildtype controls, respectively. Approximately 10% of proliferating non-cardiomyocytes in the Asxl2-/- heart express the cardiogenic marker NKX2-5, a frequency that is ~7-fold higher than that observed in the wildtype. EdU lineage tracing experiments showed that ~6% of pulsed-labeled non-cardiomyocytes in Asxl2-/- hearts differentiate into mature cardiomyocytes after a four-week chase, a phenomenon not observed for similarly pulse-chased wildtype controls. Taken together, these data indicate de novo cardiomyocyte production in the Asxl2-/- heart due to activation of a population of proliferative cardiogenic non-cardiomyocytes. Our study suggests the existence of an epigenetic barrier to cardiogenicity in the adult heart and raises the intriguing possibility of unlocking regenerative potential via transient modulation of epigenetic activity.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...